Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
WIREs Mech Dis ; 14(6): e1577, 2022 11.
Article in English | MEDLINE | ID: covidwho-1930198

ABSTRACT

Since the declaration of the novel SARS-CoV-2 virus pandemic, health systems/ health-care-workers globally have been overwhelmed by a vast number of COVID-19 related hospitalizations and intensive care unit (ICU) admissions. During the early stages of the pandemic, the lack of formalized evidence-based guidelines in all aspects of patient management was a significant challenge. Coupled with a lack of effective pharmacotherapies resulted in unsatisfactory outcomes in ICU patients. The anticipated increment in ICU surge capacity was staggering, with almost every ICU worldwide being advised to increase their capacity to allow adequate care provision in response to multiple waves of the pandemic. This increase in surge capacity required advanced planning and reassessments at every stage, taking advantage of experienced gained in combination with emerging evidence. In University Hospital Southampton General Intensive Care Unit (GICU), despite the initial lack of national and international guidance, we enhanced our ICU capacity and developed local guidance on all aspects of care to address the rapid demand from the increasing COVID-19 admissions. The main element of this success was a multidisciplinary team approach intertwined with equipment and infrastructural reorganization. This narrative review provides an insight into the approach adopted by our center to manage patients with COVID-19 critical illness, exploring the initial planning process, including contingency preparations to accommodate (360% capacity increment) and adaptation of our management pathways as more evidence emerged throughout the pandemic to provide the most appropriate levels of care to our patients. We hope our experience will benefit other intensive care units worldwide. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , Critical Care/methods , Surge Capacity
2.
BMJ Open ; 12(2): e050331, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1691317

ABSTRACT

OBJECTIVES: COVID-19 is a heterogeneous disease, and many reports have described variations in demographic, biochemical and clinical features at presentation influencing overall hospital mortality. However, there is little information regarding longitudinal changes in laboratory prognostic variables in relation to disease progression in hospitalised patients with COVID-19. DESIGN AND SETTING: This retrospective observational report describes disease progression from symptom onset, to admission to hospital, clinical response and discharge/death among patients with COVID-19 at a tertiary centre in South East England. PARTICIPANTS: Six hundred and fifty-one patients treated for SARS-CoV-2 between March and September 2020 were included in this analysis. Ethical approval was obtained from the HRA Specific Review Board (REC 20/HRA/2986) for waiver of informed consent. RESULTS: The majority of patients presented within 1 week of symptom onset. The lowest risk patients had low mortality (1/45, 2%), and most were discharged within 1 week after admission (30/45, 67%). The highest risk patients, as determined by the 4C mortality score predictor, had high mortality (27/29, 93%), with most dying within 1 week after admission (22/29, 76%). Consistent with previous reports, most patients presented with high levels of C reactive protein (CRP) (67% of patients >50 mg/L), D-dimer (98%>upper limit of normal (ULN)), ferritin (65%>ULN), lactate dehydrogenase (90%>ULN) and low lymphocyte counts (81%

Subject(s)
COVID-19 , Biomarkers , Cohort Studies , Humans , Longitudinal Studies , Retrospective Studies , SARS-CoV-2 , Tertiary Care Centers , United Kingdom
3.
J Clin Virol ; 146: 105031, 2022 01.
Article in English | MEDLINE | ID: covidwho-1604895

ABSTRACT

OBJECTIVES: Dexamethasone has now been incorporated into the standard of care for COVID-19 hospital patients. However, larger intensive care unit studies have failed to show discernible improvements in mortality in the recent wave. We aimed to investigate the impacts of these factors on disease outcomes in a UK hospital study. METHODS: This retrospective observational study reports patient characteristics, interventions and outcomes in COVID-19 patients from a UK teaching hospital; cohort 1, pre 16th June-2020 (pre-dexamethasone); cohort 2, 17th June to 30th November-2020 (post-dexamethasone, pre-VOC 202,012/01 as dominant strain); cohort 3, 1st December-2020 to 3rd March-2021 (during establishment of VOC202012/01 as the dominant strain). RESULTS: Dexamethasone treatment was more common in cohorts 2 and 3 (42.7% and 51.6%) compared with cohort 1 (2.5%). After adjusting for risk, odds of death within 28 days were 2-fold lower in cohort 2 vs 1 (OR:0.47,[0.27,0.79],p = 0.006). Mortality was higher cohort 3 vs 2 (20% vs 14%); but not significantly different to cohort 1 (OR: 0.86,[0.64, 1.15],p = 0.308). CONCLUSIONS: The real world finding of lower mortality following dexamethasone supports the published trial evidence and highlights ongoing need for research with introduction of new treatments and ongoing concern over new COVID-19 variants.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , COVID-19/epidemiology , Dexamethasone/therapeutic use , Hospitalization/statistics & numerical data , Hospitals, Teaching , Humans , Intensive Care Units , SARS-CoV-2 , United Kingdom/epidemiology
4.
BMJ Open ; 11(1): e043012, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1041341

ABSTRACT

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 places immense worldwide demand on healthcare services. Earlier identification of patients at risk of severe disease may allow intervention with experimental targeted treatments, mitigating the course of their disease and reducing critical care service demand. METHODS AND ANALYSIS: This prospective observational study of patients tested or treated for SARS-CoV-2, who are under the care of the tertiary University Hospital Southampton NHS Foundation Trust (UHSFT), captured data from admission to discharge; data collection commenced on 7 March 2020. Core demographic and clinical information, as well as results of disease-defining characteristics, was captured and recorded electronically from hospital clinical record systems at the point of testing. Manual data were collected and recorded by the clinical research team for assessments which are not part of the structured electronic healthcare record, for example, symptom onset date. Thereafter, participant records were continuously updated during hospital stay and their follow-up period. Participants aged >16 years were given the opportunity to provide consent for excess clinical sample storage with optional further biological sampling. These anonymised samples were linked to the clinical data in the Real-time Analytics for Clinical Trials platform and were stored within a biorepository at UHSFT. ETHICS AND DISSEMINATION: Ethical approval was obtained from the HRA Specific Review Board (REC 20/HRA/2986) for waiver of informed consent for the database-only cohort; the procedures conform with the Declaration of Helsinki. The study design, protocol and patient-facing documentation for the biobanking arm of the study have been approved by North West Research Ethics Committee (REC 17/NW/0632) as an amendment to the National Institute for Health Research Southampton Clinical Research Facility-managed Southampton Research Biorepository. This study will be published as peer-reviewed articles and presented at conferences, presentations and workshops.


Subject(s)
Biological Specimen Banks , COVID-19/therapy , Translational Research, Biomedical , Artificial Intelligence , COVID-19/epidemiology , Humans , Pandemics , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL